Course Name:
Advanced Java

Lecture 13
Topics to be covered

e The Design of JDBC

e The Structured Query Language

» Basic JDBC Programming Concepts
e Query Execution

» Scrollable and Updatable Result Sets

Introducing JDBC

» According to Sun, JDBC Is not an
acronym, but iIs commonly
misinterpreted to mean Java
DataBase Connectivity

o Supports ANSI SQL 92 Entry Level

The Standard Query Language
(SQL)

» Composed of two categories:

- Data Manipulation Language (DML)

used to manipulate the data
- select
- delete
* update

- Data Definition Language (DDL)
create database
create table
drop database

Data Manipulation Language

« SELECT - query the database
o select * from customer where id > 1001

* INSERT - adds new rows to a table.
> |nsert into customer values (1009, ‘John Doe’)

« DELTE - removes a specified row
> delete
« UPDATE - modifies an existing row

> update customers set amount = 10 where id >
1003

Data Definition Language

« CREATE DATABASE - allows you to
create a database

« CREATE TABLE - allows you to create
a table definition in a database

e DROP TABLE - removes a table from
a database

e ALTER TABLE - modifies the definition
of a table In a database

JDBC Framework

» The JDBC driver manager
 The JDBC driver

General Architecture

Java Application

 What design pattern is
JOBE AP ﬂ implied in this
JOBC Driver Manager architecture?

 What does it buy for us?
JODBC Driwver API
ﬁ ﬁ » Why is this architecture

JOBC-ODBC Vendor Specific also multi-tiered?
Eridge JDEC Driver '
=ai—--
Vaondor & pecific
OOBC Driver

Java Application or Applet

|

JODBC Driver Manager

I] l

QDBC Bridge
Chihsae Oracle Drver Sybase Driver
| * '-
CDBC Bridge
Mg
i
! | !
ACCess dBase
Ciriver Dirneesr
] i
— L = L — L —
[.ﬁ-:m-l:: [alasg Cr el Sy base

Figure 1. Anatomy of Data Access. The Driver
Manager provides a consistent layer between your
Java app and back-end database. JDEC works natively
([such as with the Oracle driver in this example) or with

any ODBC datasource.

The JDBC Driver Manager

Management layer of JDBC, interfaces between the
client and the driver.

Keeps a hash list of available drivers

Manages driver login time limits and printing of log
and tracing messages

Secure because manager will only allow drivers that
come from local file system or the same initial class
loader requesting a connection

Most popular function:

> Connection getConnection(url, id, passwd);

JDBC Driver Types

» Type 1 (JDBC-ODBC Bridge
Technology)

e Type 2 (JNI drivers for C/C++
connection libraries)

» Type 3 (Socket-level Middleware
Translator)

» Type 4 (Pure Java-DBMS driver)

Type 1 Drivers
JDBC-ODBC Bridges

o JDBC driver translates call into ODBC
and redirects ODBC call to an ODBC
driver on the DBMS

» ODBC binary code must exist on
every client

 Translation layer compromises
execution speed to small degree

Type 2 Drivers
Native-API + Java Driver

Java driver makes JNI calls on the client API
(usually written in C or C++)

- eg. Sybase dblib or ctlib

- eg. Oracle Call Interface libs (OCI)
Requires client-side code to be installed
Often the fastest solution available

Native drivers are usually delivered by DBMS
vendor

bug in driver can crash JVMs
Example: JDBC=>Sybase dblib or ctlib

Type 3 Drivers
JDBC-Middleware Pure Java Driver

JDBC driver translates JDBC calls into a DBMS-
iIndependent protocol

Then, communicates over a socket with a
middleware server that translates Java code into
native APl DBMS calls

No client code need be installed

Single driver provides access to multiple DBMSs,
eg. WebLogic Tengah drivers

Type 3 drivers auto-download for applets.

Type 4 Drivers
Pure Java Drivers

» Java drivers talk directory to the
DBMS using Java sockets

 No Middleware layer needed, access
IS direct.

» Simplest solution available.
» No client code need be installed.
 Example: JConnect for Sybase

» Type 4 drivers auto-download for
applets

Result Sets and Cursors

» Result Sets are returned from queries.

e Number of rows In a RS can be zero,
one, or more

e Cursors are Iterators that iterate
through a result set

» JDBC 2.0 allows for backward as well
as forward cursors, including the
ability to go to a specific row or a
relative row

A JDBC Primer

e First, load the JDBC Driver:

- call new to load the driver’s implementation of Driver class
(redundant--Class.forName does this for you automatically) and call
DriverManager.RegisterDriver()

> add driver to the jdbc.drivers property - DriverManager will load
these automatically

eg: ~/.hotjava/properties:

- jdbc.drivers=com.oracle.jdbc.OracleDriver:etc;

or programatically:

- String old = sysProps.getProperty(“jdbc.drivers”);
- drivers.append(*:” + oldDrivers);

- sysProps.put(“jdbc.drivers”, drivers.toString());

- call Class.forName and pass it the classname for the driver
Implementation

Create a Connection to the
database vi the driver

Call the getConnection method on the
DriverManager object.

Connection conn =
DriverManager.getConnection(url, login,
password)

url: jdbc:subprotocol:host:port[/database]

> registered subprotocol: sybase, odbc,
msql, etc.

> eg: Jdbc:sybase:Tds:limousin:4100/myDB

Only requirement: The relevant Drivers must be
able to recognize their own URL

SQL Statements

e Create some form of Statement

o Statement
Represents a basic SQL statement
Statement stmt = conn.createStatement();
> PreparedStatement

A precompiled SQL statement, which can offer
Improved performance, especially for
large/complex SQL statements

o Callable Statement

Allows JDBC programs access to stored
procedures

Execute the Statement

executeQuery(): execute a query and get a ResultSet back

executeUpdate(): execute an update and get back an int
specifying number of rows acted on

- UPDATE
- DELETE

execute(): execute unknown SQL and returns true if a resultSet
IS available:

o Statement genericStmt = conn.createStatement();
o if(genericStmt.execute(SQLString)) {
ResultSet rs = genericStmt.getResultSet(); process(); }

> else {
Int updated = genericStmt.getUpdateCount();
processCount();

° }

etc.

Result Sets

» ResultSet rs = stmt.executeQuery(“select id, price from
iInventory”);

> rs.next() - go to next row in ResultSet

call once to access first row: while(rs.next()) {}
o getXXX(columnName/indexVal)

getFloat()

getint()

getDouble()

getString() (highly versatile, inclusive of others; automatic
conversion to String for most types)

getObject() (returns a generic Java Object)
o rs.wasNull() - returns true Iif last get was Null

JDBC 2 — Scrollable Result
Set

Statement stmt =
con.createStatement(ResultSet. TYPE SCROLL INSENSITIVE,
ResultSet. CONCUR_READ ONLY);

String query = “select students from class where type="'not
sleeping’ “;

ResultSet rs = stmt.executeQuery(query);

rs.previous(); // go back in the RS (not possible in JDBC 1...)
rs.relative(-5); / / go 5 records back

rs.relative(7); / / go 7 records forward

rs.absolute(100); / / go to 100th record

JDBC 2 — Updateable ResultSet

Statement stmt =
con.createStatement(ResultSet. TYPE_FORWARD ONLY,
ResultSet.CONCUR_UPDATABLE);
String query = " select students, grade from class
where type=‘really listening this presentation©’ “;
ResultSet rs = stmt.executeQuery(query);

while (rs.next())

{
Int grade = rs.getInt(“grade”);
rs.updatelnt(“grade”, grade+10);
rs.updateRow();

}

Prepared Statements

Use for complex queries or repeated queries
Features:

o precompiled at database (statement usually sent to database
Immediately on creation for compilation)

> supply with new variables each time you call it (repeatedly
eg.)

eg:

> PreparedStatement ps = conn.prepareStatement(“update
table set sales = ? Where custName = ?7”);

Set with values (use setXXX() methods on PreparedStatement:
> ps.setint(1, 400000);

° ps.setString(2, “United Airlines”);

Then execute:

°Int count = ps.executeUpdate();

