
Course Name:Course Name:
Advanced JavaAdvanced Java

Lecture 13Lecture 13
Topics to be coveredTopics to be covered

 The Design of JDBC
 The Structured Query Language
 Basic JDBC Programming Concepts
 Query Execution
 Scrollable and Updatable Result Sets

Introducing JDBCIntroducing JDBC
 According to Sun, JDBC is not an

acronym, but is commonly
misinterpreted to mean Java
DataBase Connectivity

 Supports ANSI SQL 92 Entry Level

The Standard Query Language The Standard Query Language
(SQL)(SQL)

 Composed of two categories:
◦ Data Manipulation Language (DML)
 used to manipulate the data
 select
 delete
 update

◦ Data Definition Language (DDL)
 create database
 create table
 drop database

Data Manipulation LanguageData Manipulation Language

 SELECT - query the database
◦ select * from customer where id > 1001

 INSERT - adds new rows to a table.
◦ Insert into customer values (1009, ‘John Doe’)

 DELTE - removes a specified row
◦ delete

 UPDATE - modifies an existing row
◦ update customers set amount = 10 where id >

1003

Data Definition LanguageData Definition Language
 CREATE DATABASE - allows you to

create a database
 CREATE TABLE - allows you to create

a table definition in a database
 DROP TABLE - removes a table from

a database
 ALTER TABLE - modifies the definition

of a table in a database

JDBC FrameworkJDBC Framework
 The JDBC driver manager
 The JDBC driver

General ArchitectureGeneral Architecture

 What design pattern is
implied in this
architecture?

 What does it buy for us?
 Why is this architecture

also multi-tiered?

The JDBC Driver ManagerThe JDBC Driver Manager
 Management layer of JDBC, interfaces between the

client and the driver.
 Keeps a hash list of available drivers
 Manages driver login time limits and printing of log

and tracing messages
 Secure because manager will only allow drivers that

come from local file system or the same initial class
loader requesting a connection

 Most popular function:
◦ Connection getConnection(url, id, passwd);

JDBC Driver TypesJDBC Driver Types
 Type 1 (JDBC-ODBC Bridge

Technology)
 Type 2 (JNI drivers for C/C++

connection libraries)
 Type 3 (Socket-level Middleware

Translator)
 Type 4 (Pure Java-DBMS driver)

Type 1 DriversType 1 Drivers
JDBCJDBC--ODBC BridgesODBC Bridges

 JDBC driver translates call into ODBC
and redirects ODBC call to an ODBC
driver on the DBMS

 ODBC binary code must exist on
every client

 Translation layer compromises
execution speed to small degree

Type 2 DriversType 2 Drivers
NativeNative--API + Java DriverAPI + Java Driver

 Java driver makes JNI calls on the client API
(usually written in C or C++)
◦ eg: Sybase dblib or ctlib
◦ eg: Oracle Call Interface libs (OCI)

 Requires client-side code to be installed
 Often the fastest solution available
 Native drivers are usually delivered by DBMS

vendor
 bug in driver can crash JVMs
 Example: JDBC=>Sybase dblib or ctlib

Type 3 DriversType 3 Drivers
JDBCJDBC--Middleware Pure Java DriverMiddleware Pure Java Driver

 JDBC driver translates JDBC calls into a DBMS-
independent protocol

 Then, communicates over a socket with a
middleware server that translates Java code into
native API DBMS calls

 No client code need be installed
 Single driver provides access to multiple DBMSs,

eg. WebLogic Tengah drivers
 Type 3 drivers auto-download for applets.

Type 4 DriversType 4 Drivers
Pure Java DriversPure Java Drivers

 Java drivers talk directory to the
DBMS using Java sockets

 No Middleware layer needed, access
is direct.

 Simplest solution available.
 No client code need be installed.
 Example: JConnect for Sybase
 Type 4 drivers auto-download for

applets

Result Sets and CursorsResult Sets and Cursors
 Result Sets are returned from queries.
 Number of rows in a RS can be zero,

one, or more
 Cursors are iterators that iterate

through a result set
 JDBC 2.0 allows for backward as well

as forward cursors, including the
ability to go to a specific row or a
relative row

A JDBC PrimerA JDBC Primer
 First, load the JDBC Driver:
◦ call new to load the driver’s implementation of Driver class

(redundant--Class.forName does this for you automatically) and call
DriverManager.RegisterDriver()

◦ add driver to the jdbc.drivers property - DriverManager will load
these automatically
 eg: ~/.hotjava/properties:
 jdbc.drivers=com.oracle.jdbc.OracleDriver:etc;

 or programatically:
 String old = sysProps.getProperty(“jdbc.drivers”);
 drivers.append(“:” + oldDrivers);
 sysProps.put(“jdbc.drivers”, drivers.toString());

◦ call Class.forName and pass it the classname for the driver
implementation

Create a Connection to the Create a Connection to the
database vi the driverdatabase vi the driver

 Call the getConnection method on the
DriverManager object.

 Connection conn =
DriverManager.getConnection(url, login,
password)

 url: jdbc:subprotocol:host:port[/database]
◦ registered subprotocol: sybase, odbc,

msql, etc.
◦ eg: jdbc:sybase:Tds:limousin:4100/myDB

 Only requirement: The relevant Drivers must be
able to recognize their own URL

SQL StatementsSQL Statements
 Create some form of Statement
◦ Statement
 Represents a basic SQL statement
 Statement stmt = conn.createStatement();
◦ PreparedStatement
 A precompiled SQL statement, which can offer

improved performance, especially for
large/complex SQL statements

◦ Callable Statement
 Allows JDBC programs access to stored

procedures

Execute the StatementExecute the Statement
 executeQuery(): execute a query and get a ResultSet back
 executeUpdate(): execute an update and get back an int

specifying number of rows acted on
◦ UPDATE
◦ DELETE

 execute(): execute unknown SQL and returns true if a resultSet
is available:
◦ Statement genericStmt = conn.createStatement();
◦ if(genericStmt.execute(SQLString)) {
 ResultSet rs = genericStmt.getResultSet(); process(); }

◦ else {
 int updated = genericStmt.getUpdateCount();

processCount();
◦ }
 etc.

Result SetsResult Sets
 ResultSet rs = stmt.executeQuery(“select id, price from

inventory”);
◦ rs.next() - go to next row in ResultSet
 call once to access first row: while(rs.next()) {}

◦ getXXX(columnName/indexVal)
 getFloat()
 getInt()
 getDouble()
 getString() (highly versatile, inclusive of others; automatic

conversion to String for most types)
 getObject() (returns a generic Java Object)

◦ rs.wasNull() - returns true if last get was Null

JDBC 2 JDBC 2 –– Scrollable Result Scrollable Result
SetSet
…
Statement stmt =
con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_READ_ONLY);

String query = “select students from class where type=‘not
sleeping’ “;

ResultSet rs = stmt.executeQuery(query);

rs.previous(); / / go back in the RS (not possible in JDBC 1…)
rs.relative(-5); / / go 5 records back
rs.relative(7); / / go 7 records forward
rs.absolute(100); / / go to 100th record
…

JDBC 2 JDBC 2 –– Updateable ResultSetUpdateable ResultSet
…
Statement stmt =
con.createStatement(ResultSet.TYPE_FORWARD_ONLY,

ResultSet.CONCUR_UPDATABLE);
String query = " select students, grade from class

where type=‘really listening this presentation’ “;
ResultSet rs = stmt.executeQuery(query);
…
while (rs.next())
{

int grade = rs.getInt(“grade”);
rs.updateInt(“grade”, grade+10);
rs.updateRow();

}

Prepared StatementsPrepared Statements
 Use for complex queries or repeated queries
 Features:
◦ precompiled at database (statement usually sent to database

immediately on creation for compilation)
◦ supply with new variables each time you call it (repeatedly

eg.)
 eg:
◦ PreparedStatement ps = conn.prepareStatement(“update

table set sales = ? Where custName = ?”);
 Set with values (use setXXX() methods on PreparedStatement:
◦ ps.setInt(1, 400000);
◦ ps.setString(2, “United Airlines”);

 Then execute:
◦ int count = ps.executeUpdate();

